Abstract: In this talk, inkjet-/3D-printed antennas, interconnects, "smart" encapsulation and packages, RF electronics, RFIDs microfluidics and sensors fabricated on glass, PET, paper and other flexible substrates are introduced as a system-level solution for ultra-low-cost mass production of Millimeter-Wave Modules and Metasurfaces for Communication, Energy Harvesting and Sensing applications. Prof. Tentzeris will touch up the state- of-the-art area of fully-integrated printable FHE-Enabled broadband wireless modules covering characterization of 3D printed materials up to E-band, novel printable "ramp" interconnects and cavities for IC embedding as well as printable structures for self-monitoring and anti-counterfeiting packages. The presented approach could potentially set the foundation for the truly convergent flexible wireless sensor ad-hoc networks of the future with enhanced cognitive intelligence and "rugged" packaging. He will discuss issues concerning the power sources of "near-perpetual" RF modules, including SG-enabled wireless power grids as well as energy harvesting approaches involving thermal, EM, vibration and solar energy forms. The final step of the presentation will involve examples from shape-changing 4D-printed (origami) packages, reflectarrays and mmW wearable (e.g. biomonitoring) antennas and RF modules. Special attention will be paid on the integration of ultrabroadband (Gb/sec) inkjet-printed nanotechnology-based backscattering communication modules, opto-RF modules as well as miniaturized printable wireless (e.g.CNT) sensors for Internet of Things (IoT), SG and smart agriculture/biomonitoring applications. It has to be noted that the talk will review and present solutions for "5S Challenges" (Scalability, Sustainability, Speed, Security and Smartness) as well as future directions in the area of environmentally-friendly transient ("green") RF electronics and "smart-skin' conformal sensors as well as massively scalable "tile-by-tile" RFID-enabled autonomous reconfigurable intelligent surfaces.