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Reflectionless Filters




What i1s a Reflectionless Filter?
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Issues with Conventional Filters
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Benefits of Reflectionless Filters
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nce Called Constant-Resistance Networks
Otto Zobel, 1928 Hendrik Bode, 1945 Core Networks:

77,

TOPICS IN THE DESIGN OF EQUALIZERS 253
DISTORTION CORRECTION 499
The element values of the first degree networks are given by explicit
formulae in Fig. 12.2. The element values of the second degree networks
are less easily written. For the structures of V and VI they can, however,
be computed, and are shown, for the Z; branch, by Figs. 12.4 and 12.5. Port 1 Port 2
In the Brune networks represented by structures VII and VIII reasonably
explicit formulae are hardly possible. Itissimplest to give formulae for the
lattice branch impedance as a whole, leaving the individual elements to be

With the above fixed values of the coefficients and formula (77), (78),
(80), and (82), the network can be constructed which is to simulate
any smooth line having physically realizable 2, and z. This simula-
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it becomes a non-dissipative phase network whose time-of-phase-transmission at the = _* " _*?_*‘ +
lower [requencies has the constant value, rp = NI'C'L) A
tion is very accurate for small values of y. As y increases, the de- e g b it Port 1 Port 2
parture of the network propagation characteristic from the smooth . S Z Z
line values also increases, but it amounts to less than 1.4 per cent Fro. 123 0 0
even at |y| = 3.0, as may be derived from a comparison of (83) i ] ) —
and (85). determined subsequently from this expression. If we write the lattice N
As an illustration of this type of design, these results were analyt- branch Z. as N\
ically applied to the case of a 104-mil open-wire smooth line having 3 o
the constants per Joop mile (for wet weather, and assumed independent il Ay + Asp + 461’2, (12-2) N
of frequency), Ay + Asp + Aop
R’ = 10.12 ohms; L' = 3.66 mh.; the coefficients A - - - Ag must satisfy the system of equations J-
e + . I =
G’ = 3.20 micromhos; {54 .00837 mf. A=y = dibsAy = o), =
The co:jresp.onding simulating network for a length ! is shown struc- Ay + Ay = ayos(ds + 4),
turally in Fig. 23, where (12-3)
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A + Ay = —(ay + a2)(ds + o), Sy — 7 +7
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Realizability Limitations Lead to Excess Flat Loss
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Higher-Order Synthesis Complex (High Element Count)
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Renewed Interest

» Discovery of coupled-ladder topologies has generated renewed interest
In reflectionless filters.

* Many researchers now exploring different ways of implementing
reflectionless filters

* Transmission-Lines

» Coaxlal Resonators

» Surface-Acoustic Wave

» Substrate-Integrated \Waveguide

* Many of these new approaches are based on empirical modeling.
» For this talk, I will focus on the fundamental coupled-ladder solution.




Coupled Ladder Topology




A Symmetric Two-Port Network, “N”
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A Symmetric Two-Port Network, “N”

Identical half-circuits
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Even-Mode Excitation




Even-Mode Excitation
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Odd-Mode Excitation
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Even and Odd-Mode Analysis
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Equivalent Circuit Equivalent Circuit
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Even and Odd-Mode Synthesis

Even-Mode Odd-Mode
Equivalent Circuit Equivalent Circuit
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Duality
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Even and Odd-Mode Synthesis
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Even and Odd-Mode Synthesis
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Even and Odd-Mode Synthesis
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Even and Odd-Mode Synthesis
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Even and Odd-Mode Synthesis
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Even and Odd-Mode Synthesis
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Even and Odd-Mode Synthesis
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Even and Odd-Mode Synthesis
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Even and Odd-Mode Synthesis
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Even and Odd-Mode Synthesis
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Even and Odd-Mode Synthesis
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Even and Odd-Mode Synthesis
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A Third-Order Reflectionless Filter

(Element values are normalized
for frequency and impedance.)
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Higher-Order Responses Not So Great
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(Element values are normalized
for frequency and impedance.)
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Higher-Order Responses Not So Great
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Subnetwork Expansion




Subnetwork Expansion
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Subnetwork Expansion
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A Seventh-Order Reflectionless Filter
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Element VValue Generalization
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Topological Generalization
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Limiting Ripple Factor
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Negative Element Mitigation
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Negative Element Mitigation

The rest of the filter...

(Element values are normalized
for frequency and impedance.)




Negative Element Mitigation
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Negative Element Mitigation
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Negative Element Mitigation
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Negative Element Mitigation

The rest of the filter...




Negative Element Mitigation
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No More Negative Elements!
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All-Pole Topologies




Type-11 to Type-l Transformation
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Type-11 to Type-l Transformation
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Type-11 to Type-l Transformation
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Type-1 Transmission Equivalent to Standard Ladder

0,

(but Reflectionless)

Designation
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Butterworth
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2.000

1.802

1.247

0.445
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04

| 4 Chebyshev
96

0.0100
0.0189
0.0500
0.1000
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0.535
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1.008
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1.323
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Negative Elements Removed As-Needed Butterworth
Chebyshev-I (¢ > 0.2187) Legendre G./2




Implementation: Discrete SMT
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Deep Rejection Chebyshev Type-11 Filter (N=7)
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Chebyshev Type-11 Even-Order Filter (N=6)
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Butterworth Filter (N=7)
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Elliptic Filter
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Implementation: Monolithic Die




Most Compact Implementation

Capacitors

Resistor

Inductors
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GaAs Integrated Passive Device (IPD) Fabrication
625 MHz Low-Pass Filter 1.6-3.6 GHz Band-Pass Filter




GaAs IPD High-Pass Filter (N=7)




ow Marketed by Mini-Circuits

Reflectionless filters were developed to improve
sensitivity in the world’'s most powerful receivers...
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REFLECTIONLESS FILTERS
Eliminate Stopband Reflections

DC to 30 GHz!
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Eliminates standing waves out-of-band

Imagine what they could do for your system.

D(to 40 GHz
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and transition, eliminating intermods, ripples and other problems caused  *Absorbs stopband signal power
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devices such as mixers and muttipliers, significantly reducing unwanted  « Good impedance match in passband,

signals generated and increasing system dynamic range.” Jump on the gopbanggnd transition pe Pate nted topo‘ogy a bSOFbS
bandwagon, and place your order today for delivery as soon as tomorrow.

Need a custom design? Call us and talk to our engineers about a  Intrinsically Cascadable® and terminates stopband signals

SEB US AT reflectionless filter lo improve performance in your system! + Passbands from DC to 30 GHz*
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» Ideal for non-linear circuits
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~33

wX

[ JMini-Circuits’

(718) 934-4500 com www. icil its.com 612 RevB_P www.minicircuits.com P.0O. Box 250166, Brooklyn, NY 11235-0003 (718} 934-4500 sales@minicircuits.com 550 Rsv D

L Mini-Circuits’

Content is copyright protected and provided for personal use only - not for reproduction or retransmission.

For reprifeepeaddMahiacthiROPublisher.

Content is copyright protected and provided for personal use only - not for reproduction or retransmission
For reprints please contact the Publisher.

= Minl-Circuits’

\ .‘ ( \f__.

GREEN BAHK
O3SFRVATORY




Thin-Film on Quartz
60 GHz Low-Pass Filter (N=5) 60 GHz High-Pass Filter (N=7)
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Size and Frequency of Various Implementations
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Canonical Filter Responses
Chebyshev Type | Chebyshev Type Il

0 — — 0

-10 -10

220 -20
) )

T 30 2 30
i 3

_40 -40

-50 -50

-60 -60

0 1 2 3 0 1 2 3
Frequency, w Frequency, w

0 0

-10 -10

220 -20
) )

T 30 2 30
i 3

-40 -40

-50 -50

-60 -60

0 1 2 3 0 1 2 3




Conventional Topologies

Lumped-Element Ladder Real Frequency Response
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T |
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Even-Order Filters
* One may derive an even-order filter by allowing

N NS the last reactive element from an odd-order
Vo o YO0 T prototype to become zero.

Migs | * This inevitably leaves some negative, zero, or

119, =2/(95-9,) = 1/g,

e Infinitely-valued elements In the bottom-most
e 1 position.
tui—+4—uit o The zero/infinite components simply disappear,
NGt and the negative elements can be compensated In
ML ap, the usual way.
In+1 On+1

(Element values are normalized
for frequency and impedance.)

!
i) _ % [ )
S == Nie) SRR



Even-Order Filters
* Many even-order filter prototypes have

SN NI nonunit-value normalized termination
BT, TR T impedance. (gN+1 7 1)
e T » An extra resistor iIs then required to meet the
19, = T 93 94 = 1/g, - - =
Lve | v | duality condition.
S * R=2/gn:1-1/9y:1)
2oy -}; » |f this formula gives a negative resistance,
Lo [ | than the same transformer identities as
before can be used to remove It.

2/(One1—1GN+1)

!
. g *
% = /
A g oo




Butterworth is its Own Inverse
“Type-I” Butterworth Topology (N=5) “Type-II"” Butterworth Topology (N=5)

ports




Butterworth is 1ts Own Inverse

“Type-1" Butterworth Topology (N=5) “Type-11" Butterworth Topology (N=5)
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Transmission-Line Topologies




Transmission-Line Implementation

Even-Mode Odd-Mode
Equivalent Circuit Equivalent Circuit
.. T
Vv 7
®

Apply Richard's transformation...

.||________————————————




Transmission-Line Implementation

Even-Mode Odd-Mode
Equivalent Circuit Equivalent Circuit
®

Add port extension...

s
R




Transmission-Line Implementation

Even-Mode
Equivalent Circuit

Odd-Mode
Equivalent Circuit




Transmission-Line Implementation

Even-Mode Odd-Mode
Equivalent Circuit Equivalent Circuit

iy

pS Apply Kuroda's Identity...
1
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Transmission-Line Implementation

Even-Mode Odd-Mode
Equivalent Circuit Equivalent Circuit

.||___-____—————-.——————

Must restore symmetry...




Coupled-Line Identities

A Well-Known Identity

A NOT SO Well-Known Identity

Io—:rgm M—02 = — e
( ‘j"i o IO_:QTSB)




Application of Coupled-Line Identity




Transmission-Line Implementation

z,="p, 2, =1p

p = (xoe-1))

2, = 2pl(p +1), z, = 2/(p +1)
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