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design
 parameters

responses

More accurate solutions

More computationally intensive

More equations
More variables
More complex algorithms

Microwave Modeling/Simulation

Equivalent circuit

EM

Multiphysics
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From Biological Learning 
to Machine Learning
- Biological Neural Network

L.H. Tsoukalas and R.E. Uhrig, Fuzzy and Neural 
Approaches in Engineering, Wiley, 1997

“Start”

Mary     Lisa       John

“Stop”

“Help”
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Artificial Neural Network  
(ANN)
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Neural Network Training

Training Data

by simulation/
measurement
d = d(x)

Objective: 

to adjust w such that

minimize ( y – d )2 
Validation Data

by simulation/
measurement
d  = d(x  )vv

w x

Neural
Network
y = y(x)
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Early Works 
of ANN for Microwave Design

• ANN for microwave impedance matching (Vai, Prasad, IEEE MGL 1993)
• ANN for microstrip circuit design (Horng, Wang, Alexopoulos, IMS 1993)
• ANN for microwave analysis and optimization (Zaabab, Zhang, Nakhla, IMS 1994)
• ANN for modeling via interconnects in microstrip circuits (Watson, Gupta IMS 1996)
• ANN for microwave CAD (Creech, Paul, Lesniak, Jenkins, Lee, Calcatera, IMS 1996)

• ANN for microwave optimization and statistical design
(Zaabab, Zhang, Nakhla, T-MTT, 1995)

• ANN for microwave circuit analysis and design (Vai, Prasad, T-MTT 1995)
• ANN for modeling vias and interconnects in dataset circuits

(Watson, Gupta, T-MTT 1996)
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• 1st Workshop:
Workshop on Applications of ANN to Microwave Design
IEEE MTT-S IMS (Denver, Colorado), 1997.
Chairs: K.C. Gupta and M.S. Nakhla;
Speakers: L. Mahajan, K.C. Gupta, M.S. Nakhla, G.L. Creech, Q.J. Zhang

• 1st Short Course:
Applications of ANN to RF and Microwave Design
IEEE MTT IMS, (Boston, Massachusetts), June 2000.
Instructors: K.C. Gupta and Q.J. Zhang

Historical Events 
of ANN for Microwaves
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Applications of ANN 
to RF and Microwave Design

(Special Issue of the Int. J. RF Microwave CAE, 1999)

• Review of ANN, and filter modeling and classification (Burrascano, Fiori and Mongiardo)
• Synthesis of transmission line structures (Watson, Cho and Gupta)
• Microwave circuit design beyond black box models (Vai and Prasad)
• Large-signal device modeling and nonlinear circuit design (Harkouss, Rousset, et. al.)
• RBF models for MESFET and HEMT intermodulation distortion (Garcia et. al.)
• ANN structures and training (Wang and Zhang)
• Use of prior knowledge for ANN development (Watson, Gupta and Mahajan)
• Neurocomputing in IC process applications (Creech and Zurada)
• ANN for filter design trained with FEM EM data (Fedi, Gaggelli, Manetti and Pelosi)
• Wavelet neural net for EM based optimization (Bila, Harkouss, Ibrahim, Rousset et. al.)
• Calculation of the bandwidth of microstrip antennas (Sagiroglu, Guney and Erler)
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Simulation            vs                 Design
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Lot of help from computers

Computation intensive

CPU time

Based on solid physics laws
Kirchhoff’s law
Maxwell’s equation
….

Mathematical/numerical formulations
partial differential equations
linear/nonlinear equations
Fourier transforms
…..
FEM, FDTD, MOM, TLM, etc
linear/nonlinear equation solvers
….

Partial help from computers

Human intensive

Human time

Use simulation to verify a design solution,
How to find a design solution may require 
human knowledge, experience, learning

Human judgement, intuition, trial-error

Simulation >>  “Intelligent Simulation”

Cognition-driven design

Simulation            vs                 Design
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Based on solid physics laws
Kirchhoff’s law
Maxwell’s equation
….

mathematical/numerical formulations
partial differential equations
linear/nonlinear equations
Fourier transforms
…..
FEM, FDTD, MOM, TLM, etc
linear/nonlinear equation solvers
….

cause -> response relationships often do 
not have no mathematical formulas

Learning from examples

Use of prior knowledge

Simulation            vs                 Cognition

“Start”

Mary     Lisa       John

“Stop”

“Help”
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Cognition-Driven Design
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Equivalent/empirical/EM/multiphysics simulators

Machine learning methods
AI oriented design methods
Computer-based model building algorithms
New optimization algorithms
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Examples of Research Directions 
in ANN for Microwave Design

• General applications of ANN to microwave design

• Knowledge-based neural networks

• Neural networks for parameterized modeling of EM structures

• Neural network based models for microwave transistors

• Neural network based behavioral modeling of nonlinear circuits

• Inverse modeling

• Neural network structure and training algorithms
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Values of geometrical parameters are repetitively changed during design requiring repetitive evaluations of EM solutions.  

Repetitive evaluation using standard EM simulations are expensive.

Need parametric models for fast evaluation of EM behavior while geometrical parameters are repetitively changed.

geometrical 
parameters

EM responses

change of 
geometrical 
values

Iterative 
Design

Monte Carlo
Analysis

Optimization
Iterations

EM 
Simulation

Yield-Driven
Design

Repetitive EM Simulations in Microwave Design
- Need for fast parameterized models
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L1 L2 L3 L4 R1 R2 R3 R4 C1 C2 C3 C4 Rs Vp Tr e1 e2 e3

…...

1 2 3 4

Massive Analysis of Signal Delay on PCB
(A. Veluswami, Q.J. Zhang and M.S. Nakhla, 1997)

Interconnect delay 
analysis in PCB

(slow)

Neural network
(fast)

Automated ANN Training for Spiral 
Inductor Modeling

(V. Devabakhtuni, M. Yagoug, Q.J. Zhang, 2001)

3D EM
(slow)

Neural network
(fast)

….

RS11    IS11    RS12   IS12

w   s      fr

ANN for Parameterized Modeling
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ANN for Modeling of Side-Coupled Circular 
Waveguide Dual-Mode Filter

(H. Kabir, Y. Wang, Y. Ming, Q.J. Zhang 2010)

Side 
view

Top 
view

3D 
view

Input/output 
irises

Coupling iris

Coupling screw

Tuning 
screws

Accurate solution
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Geometry1

Geometry2

Modeling 
Method

Evaluation 
Time

Finite element 45 min
Mode matching 6 min

Modular ANN 0.006 s
Geometrical design variables of the filter
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Deep Neural Network
for Parameter Extraction of Microwave Filters

(J. Jin, C. Zhang, F. Feng, W. Na, J. Ma, and Q.J. Zhang, 2019)

|S11| at 35 frequency points

Filter coupling 
parameters
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Knowledge-Based ANN

Combine microwave formulas with ANN
(F. Wang and Q.J. Zhang, 1997)

• Reduced amount of training data

• increased extrapolation capability

Neuro-SM for Passive Devices (Rayas-Sanchez, Bandler 1999)
Neuro-SM for Active Devices (L. Zhang and Q. Zhang 2005)

• ANN to map between device coarse models and 
training data

• Reduced amount of training data needed

Existing Coarse 
Model

vdc
vgc

id=idc

vd

ig=igc

vg

idc igcig id 

Mapping Neural Network
[vgc vdc]= fANN(vg,vd, w)
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Solution: Train a ANN to map the equivalent circuit model to measurement data of new device.
The resulting knowledge-based model accurately represent the new device behavior 
(GaN trapping effect, frequency dispersion, etc)

trapping mappings 

gate 
charge 
mapping 

drain 
charge 
mapping 

coarse 
dynamic 
trapping 
model 

coarse gate 
charge 
model 

coarse drain 
charge model 

Knowledge-based ANN: Neuro-SM for GaN HEMT Modeling
(Z.H. Zhao, L. Zhang, F, Feng, W. Zhang and Q.J. Zhang, 2020)

Problem:

standard equivalent circuit model 

does not match 

measurement data of 
a new device (GaN HEMT)



20

x

z

y

Segment 1 Segment 2

Top Layer

Layer 20

Layer 10

Layer 2

 Dielectric Material 
N4000-13TM

Lh

Ls

Knowledge-based Neural Model
for Differential Via

(Y.Z. Cao, L. Simonovich, and Q.J. Zhang, 2009)

HFSS EM
Simulations

Neural Network

d

Frequency

x

 dy
SMNN Model

Dh LaWaDp Lh Ls

Geometrical Variables

Equivalent Circuit

CeCircuit Elements

Equivalent circuit (knowledge) and ANN are combined:

ANN:                       map the geometrical changes to R, C changes in equivalent circuit
Equivalent circuit:    provide S-parameters
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Neural network maps the 
geometrical variables into 
pole-residue parameters,

Thus allowing the transfer 
function to respond to 
changes in geometrical 
design variables.

If empirical model is not available, transfer function (TF) can be used as the knowledge:

Knowledge-based Method:  Neuro-TF Model 
(F. Feng, C. Zhang, V. M. R. Gongal-Reddy, J. G. Ma, Q. J. Zhang 2016)
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Problem: Pole tracking in -space while 2 geometrical variables varying (49 samples with d1 and d2 varying).  
Pole p3, p5 are easily separated from other poles.  
However, p1, p2 and p4 are mingled and not clearly separatable.
How to separate the 147 poles into 3 groups p1 , p2 and p4 ?, and track the pole movements ?.

fifth-order waveguide filter with 9 geometrical parameters

An EM example considering only 2 geometrical variables d1, d2.

Pole-Tracking for Neuro-TF
(J.N. Zhang, F. Feng, W. Zhang, J. Jin, J.G. Ma and Q. J. Zhang 2020)
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Distance-based method (DBM)
DBM with refinement training
Continuation with refinement
Proposed method
EM data

64 DOE test samples used

results for 2 of the test 
samples are shown  here.

More Challenging Case: 
all 9 geometrical variables in the fifth-order waveguide filter.
81 geometrical samples from DOE – harder because they are not grid sample
18 poles – higher order transfer function, harder because more ambiguities between poles

proposed method using EM sensitivity and MPVL is used to train the Neuro-TF model

Neuro-TF with Pole-Tracking
(J.N. Zhang, F. Feng, W. Zhang, J. Jin, J.G. Ma and Q. J. Zhang 2020)

Test sample  1                                        Test sample 2 

Considering that the data used in the figure are test data (never used in training), 
 the proposed method is more accurate than the three existing methods
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3 space mapping iterations

Higher yield solution and faster yield optimization 
reducing computation time from 72 (Monte-Carlo based) 
and 12 hours (PC based) down to 5 hours (Neuro-TF).

Order of TF: 12
81 DOE samples for training the neuro-TF
Number of hidden neurons is 10 

Adaptive weighting factors for different 
frequency points in objective function 
during optimization. 

Monte Carlo analysis with 200 random samples of the filter

before
yield opt.

after
yield opt.

Neuro-TF Model for Yield Optimization of EM Structures
(J.N. Zhang, J. Jin, W. Zhang, Z.H. Zhao and Q. J. Zhang 2021)
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Neural space mapping to map 
pure EM response to multiphysics
response, for fast multi-physics 
modeling including 
electromagnetic, thermal and 
mechanical stress effects w.r.t.
changes in geometrical variables

EM-Centric Multi-
Physics Responses

Temperature distribution

Structural deformation

Neuro-SM for Multiphysics-based Modeling
(W. Zhang,  F. Feng, V. Gongal-Reddy, J. Zhang, S. Yan, J. Ma and Q. J. Zhang 2018)
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The parallel space mapping with the surrogate ANN 
model reduced Multiphysics optimization from 
59 hours down to 1.7 hours.

9-level DOE with 81 EM samples for training ANN model 
5-level DOE with 25 samples for training the space 
mapped ANN model

CPU time for each Multiphysics simulation is 11.9 min and 
for each EM simulation is 2.1 min

Multi-physics vs pure EM under P=500W.  Space 
mapping aligns EM and multiphysics responses while 
the geometrical variables vary during optimization.

ANN for Multiphysics Optimization of High-Power Filters
(W. Zhang, F. Feng, W. Liu, S. Yan, J. Zhang, J. Jin and Q. J. Zhang 2021)



27

AI/ML Based Technologies 
for Microwaves 

Special Issue of the IEEE Trans. MTT (Nov. 2022)
Guest Editor: Q.J. Zhang

209 full-paper submissions

45 accepted/published
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AI/ML Based Technologies 
for Microwaves 

Special Issue of the IEEE Trans. MTT (Nov. 2022)

Overviews of AI/Machine learning

ANN for microwave computer-aided design (Feng, Na, Jin, J. Zhang, W. Zhang, et al.);

Bayesian learning for uncertainty quantification, optimization and inverse modelling
(Swaminathan, et al)

AI-assisted surrogate modelling and optimization of microwave filters (Yu, et al)
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AI/ML approaches for analysis, forward/inverse modelling and optimizations for
microwave design

AI/ML technologies for nonlinear device modelling, power amplifier (PA) behavioural
modelling and digital predistortion,

AI/ML for electromagnetic inverse scattering, near-field scanning, or electromagnetic
imaging

AI/ML for radar sensing and signal processing

AI/ML for biomedical and other applications

AI/ML Based Technologies 
for Microwaves 

Special Issue of the IEEE Trans. MTT (Nov. 2022)
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Machine Learning Methodologies

AI/ML Based Technologies 
for Microwaves 

Special Issue of the IEEE Trans. MTT (Nov. 2022)

k-means clustering

support vector machine (SVM)

Gaussian process (GP) regression

Bayesian optimization (BO),

reinforcement learning (RL),

U-net etc;

ANNs

deep learning

convolutional neural networks (CNN)

recurrent neural networks (RNN)

long-short term memory networks (LSTM)

generative-adversarial networks (GAN)
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Microwave Applications
modelling and design: passives - planar and 3D electromagnetic structures

microwave filters
SIW circuits
high-speed IC packages

modelling and design: actives - GaN-HEMT/FinFET/nanosheet FET
PA/DPD, MIMO transmitters

Electromagnetic imaging for breast cancer detection/localization, thorax imaging

Doppler radar based human motion recognition, gesture recognition and object
identification

AI/ML Based Technologies 
for Microwaves 

Special Issue of the IEEE Trans. MTT (Nov. 2022)
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AI/ML Day in IEEE MTT-S IMS2023
Organizers: Q.J. Zhang and Costas Sarris

• AI/ML Bootcamp (Q.J. Zhang, C. Sarris, U. Gustavsson) Bootcamp on Sunday

• AI/ML for RF PA Design and Digital Predistortion (A. Zhu, R. Ma) Workshop WMC

• Brain-Inspired Learning for Intelligent Spectrum Sensing (L. Katehi), Invited talk

• AI/ML Technologies for Microwaves (Q.J. Zhang, C. Sarris), Special Session Tu1A

• AI/ML Technologies for Signal and Power Integrity
(J.E. Rayas-Sanchez, C. Sarris), Focus Session Tu3A

• AI/ML based Wireless System Design and Operation – Hope or Hype ?
(C. Sarris, Q.J. Zhang, O. Eliezer, B. Sadhu) Panel Session PL2

• Machine Learning for RF to mm-Wave Systems
(A. Tang and Q.J. Zhang), Technical Session Tu2A



33

AI and Machine Learning for 
Microwaves

Machine learning (such as neural networks) exploited in microwave area since 1990s.

Activity in machine learning intensified in recent years

Ongoing Activities and Trends

new algorithms, ML structures, microwave knowledge-based ML methods

component level - EM, GaN HEMTs, ..

circuit/system level - PA, DPD, MIMO, intelligent wireless systems

application level      - biomedical, security, autonomous systems, communications 

new and emerging applications
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Thank You
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